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A. INTRODUCTION

i
2a

A linear, discrete-time, constant, dynamical system over an
integral domain R 1is defined by giving a finitely generated torsion-
free R-module X (the state module) and a triplet of R-homomorphisms

(F. G, H). where

B ISk S B W Een

We call the free R-module R the input module, R the output module,

and wirite the equations of the system

warmeme o ey AVAILABLE COPY

Ve = By

-+

m
where u, (the input at time t) belongs to R . x, (the state at
N

time ) to X @nd Y (the output at time t) to R".

It follows from the linearity of these eauations that the relation

they induce between inputs and outputs is completely characterized by

the infinite sequence of p X m R-matrices § = (Al. Bov ~ox ) TShe
input /output sequence of the system) where At is the matrix
representation of the R-homomorphism HFt-lG: Rm 7>Rp in the standard

b

m .
bases of R and R . Conversely, given a sequence of p ¥ m

R-matrices § = (Al‘ A_. ... ), the realization problem consists in

finding a finitely generated torsion-free R-module X and three
t-1

R-homomorphisms (F. G, H) as above such that A, = HF' "G, for all

i

Suppose that X can be penerated as an R-module by n elements;
then we can represent the homomorphisms F, G, H (not necessarily
m
~uniquely) by R-matrices with respect to the standard bases of R and

rP

distinction between the homomorphisms and their matrix representations.

and the set of generators, We shall from now on not make any

If r is the smallest cardinality for a set of generators of X, we

shall ecall r the dimension of the system over R.

ps




When R 1is a field, the realization problem is completely solved.

Tt is shown in KAIMAN., FALB, and ARBIB [19G8| that an input/outpdt

gequence can be renlized by a Tinite-dimensional gystem if" its

associied behavior ratrix

has finite rank n. that n 1is the minimal dimension for a
realization of the sequence, and that a system realizing the sequence
has minimal dimension iff it is canonical, i.e. both ‘eachable (the
map (@, BG; - Wn“lG): R™ X is onto) and observsble (the map
(Y, FUHY, ..., (@0)°°T

also given to construct such a minimal realization.

H')': X -»R'P is one-to-one). An algorithm is

When R 1is not a field, it was first shown in ROUCHALEAU, WYMAN,
and KAIMAN (19721 that, under fairly general conditions on R, the
criterion for the existence of a realization is exactly the same as
above, namely that the behavior motrix have finite rank (an up-to-date
summary of these existence results is given in Section B of this paper).
That paper did not consider the question of the minimal dimension of
realizations. Such a concept of course is easy to define: a
realizable input/output sequence § (which therefore has a behavior
matrix of finite rank) can be renlized by linear systems of finite

dimension; a minimal realization of S over R will be one, the

dimension of which is smaller than that of any other realization of 8.
It. of course, always exists but is not equivalent any more t» the
notion of canonical renlization; its dimension may be lnrger than the
rank of the behavior matrix, and is not in general easily determined

from input /output data.

The purpose of the present paper will be to study a more restrictive

and stronger version of minimality. Instead of asking, as in the a

aforementioned paper (ROUCHALEAU, WYMAN, and KATMAN (10°21]):
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"When does an R-input/output sequence & realizable over the

quotient field K of R also have a realization over K?",
we shall ask:

"When does S have an R-realization which has the same dimension as

a minimal realization over Ki".
Since R is assumed to be an integral domain, we may consider its
quotient field K. To a system (X, F, G, H over R we may associate a

system (X @ K F ®R K, G® X, H ®R K) over K which has the

e N T AN e

same input/output sequence of R-matrices. Furthermore, if the system
over R 1is canonical, then so is the associated system over K
(because the localization functor is flat). Since the R-seaquence

o= (Al, Aoy eee ) is a fortiori a K-sequence, we can find a
realization for it over K; the system (X R K, F‘Sk K, & 2y K

H 8% K) is an example of such a realization. To determine a minimal
realization for the R-sequence S over K is a solved problem. We

are thus led to the following

(1.1) DEFINITION. A realization (X, F, G, H) of a sequence S

over R is called absolutely minimal iff its dimension is the same as

that of a minimal realization of S over the quotient field K.

((2) REMARK. This definition is equivalent to requesting that the

system over K defined by the matrices F, G, H be canonical,

(13} [EMMA., The state module X of an absolutely minimal system Z

is free. Z is observable and weakly reachable (i.e., rankk (B BGy ey

n-1 ; . :
F G) = n, dimension ol the system), and conversely an observable and

weakly reachable system is absolutely minimal.

PROOF. The n generators of X as an R-module are also
generators of X vm K as a K-vector space. [f they are not linearly
independent, the dimension of X b% K is less than n, contradicting

minimality over K.

. If the system were not observable, there would be a state x # O 4

in X such that ¥
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x'(H F'H'...(F')n-lH')' = 03
but this would a fortiori mean that there is a state x # 0 in
X h% K which is unobservable for the system (X “R K, F, G, H) over
K, contradicting its canonicity.
The proof of the coaverse is just as trivial. O

The aim of this paper is to characterize those rings R over
which any realizable input/output sequence can hove an absolutely
minimal realization. The interest of such a characterization is two-fold.
First, it will tell us exactly when we do not lose anything (from the
point of view of dimension) by realizing an input/output sequence over
the ring R rather than over an overfield of R. Second, one of the
motivations for studying systems over rings is their use in modeling
delay-differential systems (c.f. KAMEN [1975)). 1In this case the
rings under consideration are polynomial rings; a sufficient condition
for the pointwise controllability of delay-differential systems is
that the associated ring model be weakly reachable (see SONTAG [1976,
Section 5!). So it is important to know the polvnomial rings over

which this condition is always true.

After having reviewed in Section B of this paper the conditions
under which a realization exists, we shall study the problem of
absolutely minimal realizations. We shall see in Section C that, for
single input systems, canonical realizations are absolutely minimal
over very general rings. Section D shows that for general multivariable
systems this very nice property holds only over principal-ideal domainsj
we then give an alporithm for constructing such a canonical, absolutely
minimal realization. In Section E, we shall give a condition
guaranteeing the existence of absolutely minimal realizations;

specializing the result to the case of polynomial rings, we shall find

that only those in one or twc variables satisfy the condition.
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B. SURVEY OF THE CONDITIONS UNDER WHICH REALIZATION EXIST OVER A RING

The fact that

(2.1) THEOREM. An input/output sequence S of matrices over a

Noetherian domain R is realizable over R iff it is realizable over the

4/20/77 3s

quotient field K of R.

was first established by ROUCHALEAU, WYMAN, and KAIMAN [19721. To walke
the paper self contained, we shall now give a simple proof of this
result,

It is well-known that an input/output sequence S 1is realizable
(whether over a field or over a ring) iff the (infinite) columns of its

behavior matrix

A L e

o-(n o a..) BEST AVAABLE COPY

.
.

.

may be written as linear combinations of a finite subset of columns; in
other words, iff the columns of B generate a finitely generated
module we can then obtain a canonical realization as follows: take X
as state module; consider the shift operator on X defined by sending
each column of B to the column occupying the same position in the next
block column; it extends to a well defined module endomorphism ¥ of

X Dbecause of the Hankel pattern of B; define a linear transformation
G: Rm - X by mapping the j-th standard basis vector of Km into the
J=-th elementary column of B; finally, define H: X —aRp by taking as
the image of any column of B the vector composed of the first p
elements of that column (in other words, the intersection of the

column with the first block row). Then (X, ¥, G, H) is a canonical

o

realization of .

Iet us now assume that the R-sequence § is realizable over K,

and assume that ¥ar sony ¥ are a set of basis columns for B over K.
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Then any column v of B can be written as

n

ST ’ &
¥ = gl ui(v)vi, aj(v) = K.

The coefficients ai(v) in this linear dependence can be obtained
using Cramer's formulas

A, (v)

ai(v) e Ai‘\'v), A € R.

Both these determinants, computed by additions and multiplications from

elements of R, Dbelong to R.

0
: i .
Define now ui s We have, for any column v of B,

n
v = L A&(v)ui, Ai(v) € R,

hence the R-module generated by the columns v of B 1is contained

in the R-module generated by uy, ..., u . Since "Noetherian" is
equivalent to "every submodule of a finitely generated module is

finitely generated", the theorem follows.

If we relax the Noetherian assumption, then we can use the

following result of CHABERT [1972]

(2.2) RESULT. ILet R be completely intepgrally closed and K its

Q

quotient field. Then an input/output sequence & of R-matrices is

realizable over R whenever S 1s realizable over K. TFurthermore,

the monic recurrence relation of § of minimal degree over K has

all of its coefficients in R.

PROOF. See EILENBERG (1974; Chapter XVI, Theorem 12.0 . =

But it has been shown (ROUCHALEAU, KAIMAIN, and WYMAN (1972') that an

R-sequence is realizable over R whenever it is realizable over the

integral closure R of R. Hence we have:

ey
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(2.3) RESULT. If the integral closure R of a ring R is

completely integrally closed, then an R-sequence is realizable over

R iff it is realizable over the quotient field K of R.

A slightly less general result was proved by ROUCHALEAU and WYMAT
(19741, using a generalization of classical stability theory. Extensions

to reduced rings can be found in ROUCHALEAU (19721 (reduced rings are

rings with no nilpotent elements).

ps
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C. SINGIE-INPUT OR SINGLE-OUTPUT SYSTEMS

Let S be such that m =1, p Dbeing an arbitrary finite integer.

It is well known that the existence of a realization is linked to that

of a monic recurrence relation between the elements of 8. e have

precisely

(3.1) LEMMA.

If an input/output sequence S with m = 1 satisfies

a monic recurrence relation over R of degree n, then § has a

realization of dimension n over R.

B Ass the AA + ... + QA + A f'or s
PROOF ssume that x A t + “lpk+n-1 i ‘k+n or all
k 0, with ai R for all i. Then the R-matrices
0 0 Sk 0 -0« 1%
n \
=
< S !
F - - , H=(A,. A £ )
1 n
0 0 =0 0
- al 0
together with the state module Rn constitute a realization of size n. =)

(3.2) LEMMA.

output sequence

polynomial of minimal degree over the quotient field of R has all of

If the domain R is integrally closed and the input

is realizable over R. then its monic recurrence

its coefficients in R.

PROOF .

recurrence relation with coefficients in R (given, for exsmple, by the

characteristic polynomial h(z) of F 1in one of its realizations). If

we now view

of & 1is an ideal J in K'z| (nonempty, since J contains h(z)).

This ideal is principal, hence has a monic generator f(z). the monic

recurrence polynomial of minimal degree of & over K. Thus we have:

ol

Since © 1is realizable over R. it satisfies a monic

as a sequence over K, the set of recurrence polynomials
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h(z) = g(z)f(z), n(z) monic in R[z!, flz! monic in Klzl.

This is the exact setup of ZARISKI and SAMUEL !Volume I, Chapter V.
Section %, Theorem 1, and it follows from the integral closure of

that £(z) isdn Rlzl.

Assume then that our input/output sequence S has a minimal
realization over K of dimension n and that & is realizable over
R. This means that the associated behavior matrix 5(3) has rank n
(see for example KAIMAN, FALB, and ARBIB |19:9; Chapter 10 ), hence
that the first n + 1 columns of B(S) are linearly dependent. Then
there is a recurrence relation of degree n over K between the
elements (in the present case, vectors) of the input /output seauence.
If R 1is inteesrally closed, it follows from (3%.2) that, there is a
monic recurrence relation of degree < n over R. By (%3.1), there is
an R-realization 7 of dimension - n. Since a realization with
coefficients in R 1is a fortiori one with coefficients in K and the
dimension of a minimal realization over K 1s n, this R-realizatio:
2. must have dimension exactly n. Turthermore. the realizatiou
constructed in (4.1) is reachable (the columns of G, FG, .... I”_IG

n
generate R ) and observable. We have therefore proved

(%.3) PROPOSITTON. An R-realizable input/output sequence with m =1

over an integrally closed domain R has an R-realization which is

both canonical and absolutely minimal.

The argument is very similar in the case of single-output systewms.
The n-dimensional realization associated with the recurrence of degree

n 1is now given by

/0 g 0 P 0 /A
/ 1
0 0 1 . 0 A \
F " . p . LG . ., H Gl e Gl
( % 1 /
0 ) 0 : a1
. - O - - ( o - (Y A




n 5
R being the state module. Thus we have

(%.h) PROPOSITION. An R-realizable input/output sequence with p |

over an integrally closed domain has an R-realization which is

| 2
~heolutely minimal and observable but not necessarily reachable. %‘
To see that nll realizations like in (%.4) are not necessarily :
reachable, assume that R is not a principal ideal domain and let b
&, B € R generate a nonpriancipal proper idesl J of R. .. the {
input /output sequence Al = (@ B) = A. = ... is realized wi ;
over R by F =1, G = (xpB), H=1. If we take R as a state %
module, then this absolutely minimal realization is not reachable & nce |
J 1is proper», A canonical realization would have a state module ?
isomorphic to J (which is non prinecipal) hence its dimension would be ¢
2, and it would not be absolutely minimal. : %
The dual of such a realization, on the other hand, is canonical. ;
We have here an exsmple of a "strongly observable" system (see SONTAG
[1977b]), as well as a breakdown of the fact that the dual of a
canonical system over K = field is canonical.
(3.5) REMARK. If we assume that R 1is not just integrally closed
but even completely intesrally closed (for example, if it is
integrally closed and Noetherian) then we need assume only in (3.%) and
(3.4) that the input/output sequence S has a minimal realization of o
dimension n over K. That it is R-realizable will follow directly
from (2.2). 4
Let us now consider the general multivariable case. _
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sequence S over a Noetherian domain R i absolutely minim«i if and

MINRING 11
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D. WHEN ARE CANONICAL REALIZATIONS AISO R-MINIMAL:

The answer to this question for multi-input, multi-output systems

is very simple.

(k1) PROPOSITION. The canonical realization of every input/output

«

only if R dis a principal-ideal domain.

PROOF. Sufficiency. Let X be the state module of a canonieal
realization (X, F, G, H) of the sequence S; is by definition

finitely generated and torsion free. Since R 1is a principal-ideal

domain, X is a free module. Iet dim X = n. Consider the

associated K-system (X &, K, FR® K, G& K, H3 K). Its state
R R R R

space X K has the same dimension n (as a K-vector space) as

R
(as an R-module) since X 1is free. As was pointed out in the

introduction, this associated K-system is canonical since the
original R-system was. So n is the dimension of a minimal reclization
of S over K. The system (X, F, G, H) 1is therefore necessarily an

absolutely minimal realization of S.

Necessity. Tet us show that any finitely pgenerated torsion-free

module X may be the state module of a eanonical system. Since X is

finitely generated, with, say, m generators, there is a projection

m u =
R » £ + 0O,

Since X 1is finitely generated, torsion-free, and the rings we are

considering are integral domains, there is also an injection, tor some p,

0 » X vR .

(see ROTMAN [1970; Theorem 4.211). So (X, F, G, H), with X as a
state module and with PF = identity, G =u, H = v 1is a canonical
systen.

It was pointed out in the Introduction (Lemma 1.%) that the state

module of an absolutely minimal realization is always free. 8o if the

b
i
t
i
v
i




state module of any canonical system is R-misimai, then any finitely

generated, torsion free-module is free.

This in turn implies that the ring is a Bezout ring. Indeed,

)

any finitely generated ideal J in the domain R 1is a finitely

generated, torsion free R-module; s d muast be free. Sinece J 1is a |
submodule of R and R 1s generated as an R-module by a single
element, J can have only one generator. So J is prinecipal, and R
is a Bezout ring. But this, together with the Noetherian assrwpbion,
implies that R is & principal ideal domain.
We shall give an algorithm for constructing such a canonical |

realization. First we ascertain the rank of the behavior matrix B(T)

(which can be done over any field containing R, using the rank condition

of KAIMAN, FALB, and ARBIB [ 1969; Chapter 10, Condition 11.:51). Then

we find a nonsingular submatrix ¢ of maximal rank, say n, and a basis

over R for B (the submatrix of B(S) consisting of the first n block

rows and columns of the behavior matrix). This can be done in the

following way.

i) Iet L be the submatrix of Bn i containing the rows of
¢, and n] the preatest common divisor of’the elements in the rirst
row of Bn,n' Call Xy the linear combination of the columns o L
having ay as its leading coefficient.

ii) Subtract from every column x of L a multiple of xl

a(x)xl (a(x) din R) cuch that the first element of x - O(x)xl be
0. This is possible by definition of aq - We get a nex matrix Ll
with zero top row, and such that its columns together with x1 still

generate the columus of L.

iii) We apply the same procedure to the second row of Ll’

obtaining x, and L., ete ... « At the end of the #focess, we shall

¢

have a basis made up of vectors (xl, Seadiy xn). let I° be the n X m
submatrix of L hoving its columns in the first block columns and A
the p X n submatrix of Rn corresponding to the columns ~t + and

’
the first block r w. Then we can write out a realization (the so-called

Silverman reslization):




=
|

-1 -1
= (xl, s xn) (o) (xl, ey xn),

-1
- (xl, <54 xn) E

fop]
I

-1
H = A (xl, We vy xn),
where o designates the shift operator.

The matrix (Xl’ iy xn), being lower triangular, is eusy to

invert. As to ¥, its inverse is a byproduct of the deterwiination of

the rank of the behavior matrix.

MIHNE
1,

/
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E. WHEN CAN WE GUARANTEE THE EXISTENCE OF AN ABSOLUTELY MINIMAL REATLIZATIONY

We have just seen that we cannot expect every canonical multivariable

system to be also absolutely minimal, unless the ring is a principal

ideal domain. If, however, we are willing to consider absolutely
minimal systems which may not be canonical, then we can guarantee
their existence over more general rings. These are given exactly by

the following

(9.1) THEOREM. Every realizable input/output sequence S over a

Noetherian ring R has an absolutely minimal realization iff every

finitely generated reflexive module over R is free.

PROOF. Necessity. Let X be the state module of a cnnoniecal
realization of S over R and M the state module of an absolutely
minimal realization of §. By Lemma (1.7) an absolutely minimal
realization is always observable, hence ZEIGER's lerma (see KATMAN,
FALB, and ARBIB [19¢9; Chapter 10, Lemna C.!) implies the existence of
an injection X -»M. Also, by definition of a minimal realization,

M ?k K 1is the state space of a canonical realization of § over K.
So M ®_ K is isomorphic with X »_ K. Thus we have, up to

R R
isomorphism, X ¢ M C X3 K, where M is free (Lemma (1.2)).

We are exactly in the situation described by BOURBAKT (190,

Section 4, Number 1, Corollaire de la Proposition 1|, and both R-modules

X and M are "réseaux" of the K-vector space X B K, M being
furthermore free and containing X. As is pointed out in the above
reference (Proposition 3, (IV) and Remark %), Hom, (M, R) n.mR(X, R),

that is, M* C X*.

Now let X be a finitely generated, torsion-free module over R.
Its dual X* 1is finitely generated since R 1is Noetherian. ILet
{ul, vy up] be generators of X¥, We may construct a canonical
system Zo, with state module X as follows. We choose the number of
inputs n and the matrix G as in the proof of ().1), take for F thue
p

identity matrix and define 1M: X -» R in such a way that its p rows

R
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are given by the functions {ul, ok up]. :
Suppose the system Nc has an absolutely minimal realization
no= (M, ¥, G, A). By the first paragraph of the proof, X M. So
o n
the map H: X -,RL extends to a map H: M -»Hp. Since in the system !
1

the rows of H generate X¥*, the generators of X*¥ extend to
linear maps M -»R. So X¥ ¢ M¥, Tt follows that M¥ = X#,

Consequently, if X is reflexive, then X =M and so X is free.

Sufficiency. Assume that (X, F, G, H) is a canonical
system. X 1is therefore of finite type, hence a "réseau" of
X 2% K (see BOURBAKI: [19(5; Section 4, Number 1, Proposition 1!). It
follows that X% and X** are reflexive (BOURBAKI [1965, Section ki,
llumber 2, comments following Théoréme 11). So X and X¥* have the
same dual, and the map H: X ~>Rp may be viewed as a map H¥¥; X¥* -»Rp.
The map F: X —» X canonically induces a map F¥*: X¥ — X¥  which in
turn cancnically induces F¥¥: X¥¥ _, X*¥¥, Hence a system (X, F, G, H)
canonically induces a system ZI¥¥ = (X¥¥, Fx¥ G, H¥¥) having the same
input foutput map. Since X*¥* 1is reflexive, 2** is free by
assumption. But X** is a free "réseau" of X R K (BOURBAKT [19¢5;
Section U, Number =, comments preceeding Theorem 1)), hence
dimR X** = dim (x R K) (BOURBAKI [1965, Section U, Number 1, Example 21).
X.HR K Dbeing the state space of a canonical realization over K, X*¥ is

an absolutely minimal realization.

(5.2) REMARK. Absolutely minimal realizations are not necessarily

unique. This fact will be investigated in SONTAG [1977a].

We have thus obtained an abstract characterization of those rings
over which absolutely minimal realizations always exist. We shall now

show that among rings of polynomials over a field only those in one or

two indeterminates meet the condition of Theorem (H.1). (The case o

one indeterminate has alreandy been treated in the previous section).

(5.2) IFMMA. Every finitely penerated reflexive R-module is

projective iff the global dimension of R 1ig inferior or equal to 2.
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PROOF. This result---due to BASS---may be found in FATITH
[1973].

0

(r,h) IEMMA, If R is amriw" of polyanwnials in two unknowns over

a Tield, then every projective module oi finite type over R 1is free.

PROOF. See BASS [1968, Part II, Chapter L, f61. i

Hilbert's theorem on syzygies implies that the global dimension
of a polynomial ring in n unknowns is n see for example,
KAPLANSKI [19¢9, Part III, Theorem 7]). This and the last two

lemmas show that our claim is true.

OBSERVATION. A counterexample for the case »f polynomials

in three variables over a field K (R = K[x, y, z!) is given by the

FTollowins jumit /output map withh m = 3, P = 3.
Al = y £ “ ) A? = A5 = e = o .
0 -z E 0]
Q0 -y =X 0 0

Although rank B = 2, there exists no R-realization of dimension 2.
Indeed, the canonical state module X is isomorphic to the column space

of A and this module can be proven to be reflexive but not free.

l’
In view of (5-5), the general problem of deciding if a siven R

satisfies the condition of (%.1) breaks down into the subproblems:

(i) determine if global dim R <2 (easy) and (ii) decide if finitely

generated projectives over R are necessarily free. This latter

problem is very difficult, but is currently an important research area

in commutative algebra (viz. "Serre's conjecture", ete.).
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. CONCLUSION

We have shown under exactly what conditioas we can realize
input joutput sequence over a riag with matrices over the same ri
without losing any of the nice properties guaranteed by classie:
realization. theory over a field. Admittedly, the class of ri
characterized is rather narrow; however, it dres contain, beslde:
principal-ideal domains, polynomial rings in two indeterminates (whie
have applic-tions in the theory of linear del-y-differential = ste

studied by KAMEW [19791).

It is possible to give an upper bound on the inerease in size due
to the choice of a canonical realization (see SWAN {19671). In prriicular,
over a Dedekind ring, it can be shown that this bound is equal to 1
(BOURBAKI [19¢%5; Chapter '/, Section i, Number 9, Theorem ¢ y. In fact,
the first example of a canonical, yet nonminimal system was given to the

authors by WYMAH [197%] usins a Dedeking ring.
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